
Part I

Power SyStem AnAlySiS





1.1 Introduction

A power system consists of several subsystems such as generation, transmission, 
and distribution. The objectives of power system analysis are to model or to 
perform per phase analysis of power system components, to monitor the voltage 
at various buses, real and reactive power flow between buses, to design the 
circuit breakers, to plan future expansion of the existing system, to analyse the 
system under different fault conditions and to study the ability of the system 
to cope with small and large disturbances (stability studies).

1.2 Structure of Power Systems

An interconnected power system as shown in Figure 1.1 is a complex enterprise 
that may be subdivided into the following major subsystems:
 • Generation
 • Transmission and subtransmission subsystems
 • Distribution subsystem
 • Utilisation subsystem

Generators
An essential component of power systems is the three-phase ac generator known 
as synchronous generator or alternator. Its rotor is driven at synchronous speed 
and excited by the direct current. The other field is produced in the stator 
windings by the three-phase armature currents. The direct current for the rotor 
windings is provided by the excitation systems. In the older generators, the 
exciters were dc generators mounted on the same shaft, providing excitation 
through slip rings. The current systems use the ac generators with rotating 
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4 Electrical Power Systems: Analysis, Security and Deregulation

rectifiers known as brushless excitation systems. The source of the mechanical 
power, commonly known as the prime mover, may be hydraulic turbines, steam 
turbines whose energy comes from the burning of coal, gas and nuclear fuel, 
gas turbines, or occasionally internal combustion engines burning oil.

Figure 1.1 Structure of power system.

Transformers
The transformer transfers power with very high efficiency from one level of 
voltage to another. The power transferred to the secondary is almost the same 
as the primary, except for losses in the transformer. The use of a step-up 
transformer will reduce the losses in the transmission line, which makes the 
transmission of power over long distances possible. 
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Insulation requirements and the other practical design problems limit the 
generated voltage to low values, usually 11 kV. Thus, step-up transformers 
are used for transmission of power. At the receiving end of the transmission 
lines, step-down transformers are used to reduce the voltage to suitable values 
for distribution or utilisation. The electricity in an electric power system may 
undergo four or five transformations between the generator and the consumers.

Transmission and subtransmission subsystem
An overhead transmission network transfers electric power from the generating 
units to the distribution systems which ultimately supply the load centres at 
220 kV or higher. Transmission level voltages are in the range of 66 kV to 
400 kV. 

As shown in Figure 1.1, electric power is generated in the range of 11 kV to 
25 kV, which is increased by stepped-up transformers to the main transmission 
line voltage. At the substation, the connections between the various components 
are made, for example, lines and transformers and the arrangement for switching 
of these components is carried out.

The power supply network can be divided into two parts, namely, the 
transmission system and the distribution system. The transmission system 
may be further divided into primary and secondary transmission systems. The 
distribution system too, can be divided into primary and secondary distribution 
systems.

High voltage transmission lines are terminated in substations, which are 
called high-voltage substations, receiving substations, or primary substations. 
The function of some substations is switching circuits in and out of service; 
they are therefore referred to as switching stations. At the primary substation, 
the voltage is stepped down to a value more suitable for the next part of the 
flow towards the load. Very large industrial customers may be served directly 
from the primary sub-station.

The portion of the transmission system that connects the high-voltage 
substations through step-down transformers to the distribution substations is 
called the subtransmission network. Some large industrial customers may be 
served directly from the subtransmission system. Capacitor banks and reactor 
banks are usually installed in the substations for maintaining the transmission 
line voltage.

Distribution and utilisation subsystems
The distribution system connects the distribution substations to the consumers’ 
service-entrance equipment. The primary distribution lines range from 3.3 to 
11 kV and supply the load in a well-defined geographical area. Some small 
industrial customers are served directly by the primary feeders. The secondary 
distribution network reduces the voltage for utilisation by commercial and 
residential consumers. Lines and cables not exceeding a few hundred feet in 
length then deliver power to the individual consumers. The secondary distribution 
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serves most of the customers at levels of 415/230 V, three phases, and four 
wires. The power for a typical home is derived from a transformer that reduces 
the primary feeder voltage to 240 V using a three-wire line. The distribution 
system utilises both overhead and underground conductors. 

1.3 Modelling of Power System Components

S.No. Components Single line 
diagram

Equivalent circuit or Per phase model

1. Synchronous 
generator or 
Alternator

2. Motor 
(synchronous 
motor or 
Induction 
motor)

3. Two 
winding 
transformer

4. Three 
winding 
transformer

(Contd.)
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(Contd.)

S.No. Components Single line 
diagram

Equivalent circuit or Per phase model

5. Auto 
transformer

6. Short 
transmission 
line

7. Medium 
transmission 
line

8. Long 
transmission 
line

9. Static load

1.4 Single Line Diagram or One Line Diagram

A single line diagram as shown in Figure 1.2 is a diagrammatic representation 
of a power system in which the components are represented by their symbols 
and the interconnections between them are shown by a straight line (even though 
the system might be a three-phase system). The ratings and the impedances 
of the components are also marked on the single line diagram. The purpose 
of the single line diagram is to supply the significant information about the 
system in a concise form. 
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Figure 1.2 Single line representation of a representative power system.

1.4.1 Impedance Diagram

The impedance diagram (Figure 1.3) is the equivalent circuit of the power 
system in which the various components of the power system are represented 
by their approximate or simplified equivalent circuits. The impedance diagram 
is used for load flow studies. The following approximations are made:
 (i) The neutral reactances are neglected.
 (ii) The shunt branches in the equivalent circuits of transformers are 

neglected.

Figure 1.3 Impedance diagram of the representative power system of Figure 1.2.

1.4.2 Reactance Diagram

The reactance diagram (Figure 1.4) is the simplified equivalent circuit of the power 
system in which the various components of the power system are represented 
by their reactances. The reactance diagram can be obtained from the impedance 
diagram if all the resistive components are neglected. The reactance diagram is 
used for fault calculations. The following approximations are made:
 (i) The neutral reactances are neglected.
 (ii) The shunt branches in equivalent circuits of transformers are neglected.
 (iii) The resistances are neglected.
 (iv) All static loads are neglected.
 (v) The capacitance of transmission lines is neglected.
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Figure 1.4 Reactance diagram of the representative power system of Figure 1.2.

1.5 Per Unit Value

The per unit value of any quantity is defined as the ratio of the actual value 
of that quantity to the base value of the same quantity as a decimal.

  Per unit value
Actual value

Base value
=  (1.1)

Per phase analysis
A balanced three-phase system always analyses on per phase basis by considering 
one of the three-phase lines and the neutral.

Advantages of per unit system
 (i) The comparison of characteristics of the various electrical apparatuses 

of different types of ratings is facilitated by expressing the value of 
reactances in per unit based on their ratings.

 (ii) The per unit impedance of the transformer, whether referred to primary 
or secondary is the same.

 (iii) The per unit system is ideal for the computerized analysis and 
simulation of complex power system problems.

 (iv) The advantages of per unit impedance are more eagerly felt with a 
large number of circuits.

Single-phase system (1f)
In a single phase system, suppose the base MVA and base kV ratings are 
given, then

 Base current (kA) = 
base MVA

base kV
 (1.2)

 Base impedance = 
base kV

base kA

base kV

base MVA base kV
=  (1.3)

\ Base impedance = 
(base kV)

base MVA

2

 (1.4)
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  Per unit impedance of a circuit element = 
actual impedance

base impedance
\  Impedance of a circuit element in p.u. 

  = 
actual impedance (in ohms) base MVA

(base kV)2

Z ¥
 (1.5)

EXAMPLE 1.1 A single-phase transformer is rated at 110/440 V, 2.5 kVA, 
and its leakage reactance measured from L.T. side is 0.06 W. Determine the 
leakage reactance in p.u.
Solution: Given actual leakage reactance = 0.06 W

 Base impedance or reactance = 
( ) ( )

.
.

base kV

base MVA

2 3 2

3

110 10

2 5 10
4 84= ¥

¥
=

-

- W

\ Per unit leakage reactance = 
actual reactance

base reactance
p.u= =0 06

4 84
0 0124

.

.
. .

Three-phase systems (3f)
In a three-phase system, suppose the base MVA and the line-to-line base kV 
(L-L) ratings are given

Then, for star connection,

 Base voltage/phase = 
base kV L-L ( )

3
 (1.6)

 Base current/phase = 

base MVA

base kV L-L

 ( )

( )

3

3

3

fÈ
ÎÍ

˘
˚̇

È
ÎÍ

˘
˚̇

 (1.7)

  = 
base MVA

base kV (L-L)

 ( )3

3

f
¥

 (1.8)

 Base impedance/phase = 
base voltage/phase

base current/phase
 (1.9)

  = 

base kV (L-L)

base MVA 

base kV (L-L)

3
3

3

È
ÎÍ

˘
˚̇

¥
È

Î
Í

˘

˚
˙

( )f

\ Base impedance/phase = 
[base kV (L-L)]

base MVA (3 )

2

f
 (1.10)

  Per unit impedance of a circuit element = 
actual impedance

base impedance
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\ Impedance in p.u. = 
actual impedance  (in ohms) base MVA (3 )

[base kV (L-L)]2

Z ¥ f

(1.11)

Change of base value
The components or various sections of power system may operate at different 
voltage and power levels. It will be convenient therefore for the purpose of 
analysis of power systems if the voltage, power, current and impedance ratings 
of components are expressed with reference to a common value called the 
base value.

  Z
Z

p.u.(given)
actual

given
2 given

(base kV )
base MVA= ¥  (1.12)

Similarly, when expressed to the new base value

  Z
Z

p.u.(new)
actual

new
2 new

(base kV )
base MVA= ¥  (1.13)

Dividing Eq. (1.13) by Eq. (1.12)

  Z Zp.u.(new) p.u.(given)
given

new

base kV

base kV
base M= ¥

È

Î
Í

˘

˚
˙ ¥

2
VVA

base MVA
new

given

È

Î
Í

˘

˚
˙  (1.14)

For calculation of per unit values, the following points need to be noted:
 1. A base kV and base MVA are selected in one part of the system. 

The base values for 3f system are L-L kV and 3f MVA.
 2. The base MVA will be the same in all parts of the system.
 3. For other parts of the system, i.e. on the other sides of transformers, 

the base kV for each part is determined using the L-L voltage ratios 
of the transformer.

 4. The impedance values in per unit are calculated using the formulas.

EXAMPLE 1.2 Given 

Generator 1: 100 MVA, 33 kV, reactance 10%
Generator 2: 150 MVA, 32 kV, reactance 8%
Generator 3: 110 MVA, 30 kV, reactance 12%

Determine the new per unit reactance of generators corresponding to the base 
values of 200 MVA and 35 kV.
Solution:

  Base MVA, MVAnew = 200 MVA; Base kV, kVnew = 35 kV

Reactance of generator 1
Xp.u.(given) =  10% = 0.1 p.u., MVAgiven =  100 MVA, MVAnew = 200 MVA,  
kVgiven = 33 kV, kVnew =  35 kV
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 Zp.u.(new) = Zp.u.(given)
given

new

newbase kV

base kV

base MVA

base M
¥

È

Î
Í

˘

˚
˙ ¥

2

VVAgiven

È

Î
Í

˘

˚
˙

 Zp.u.(new) = 0 1 0 178
2

. .¥ È
ÎÍ

˘
˚̇

¥ È
ÎÍ

˘
˚̇

=33

35

200

100
p.u.

Reactance of generator 2
Xp.u.(given) = 8% = 0.08 p.u., MVAgiven = 150 MVA , MVAnew = 200 MVA, 
kVgiven = 32 kV, kVnew = 35 kV

 Zp.u.(new) = Zp.u.(given)
given

new

newbase kV

base kV

base MVA

base M
¥

È

Î
Í

˘

˚
˙ ¥

2

VVAgiven

È

Î
Í

˘

˚
˙

\ Zp.u.(new) = 0 08 0 089
2

. .¥ È
ÎÍ

˘
˚̇

¥ È
ÎÍ

˘
˚̇

=32

35

200

150
p.u.

Reactance of generator 3
Xp.u.(given) = 12% = 0.12 p.u., MVAgiven = 110 MVA,  MVAnew = 200 MVA, 
kVgiven = 30 kV , kVnew = 35 kV

 Zp.u.(new) = Zp.u.(given)
given

new

newbase kV

base kV

base MVA

base M
¥

È

Î
Í

˘

˚
˙ ¥

2

VVAgiven

È

Î
Í

˘

˚
˙

\ Zp.u.(new) = 0 12 0 16
2

. .¥ È
ÎÍ

˘
˚̇

¥ È
ÎÍ

˘
˚̇

=30

35

200

110
p.u.

EXAMPLE 1.3 Draw the per unit reactance diagram for the power system 
shown in Figure 1.5. Neglect the resistance and use a base of 100 MVA, 220 kV 
in a 50 W line. The ratings of the generator, motor and transformers are as follows:

G : 40 MVA, 25 kV, X'' = 20%
M : 50 MVA, 11 kV, X'' = 30%
T1 : 40 MVA, 33Y/220Y kV, X = 15%
T2 : 30 MVA, 11 D/220Y kV, X = 15%
Load : 11 kV, 50 MW + j68 MVAR

Determine the new per unit values of reactance of transmission line, and new 
values of per unit reactance of transformer T1, generator G, transformer T2 
and motor M. 

Figure 1.5 Single line diagram of Example 1.3.
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Solution:
Base MVA, MVAnew = 100 MVA
Base kV, kVnew = 220 kV

Reactance of transmission line

 Per unit reactance of the transmission line = 
actual reactance, 

base reactance, 

W
W

 Actual reactance = 50 W

	 Base reactance	=	
( )kV

MVA
new

new

2 2220

100
484= = W

 Per unit reactance of the transmission line = 
actual reactance, 

base reactance, 

W
W

  = 
50

484
0 1033= . p.u.

Reactance of transformer T1 (primary side)

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

Xp.u.(given) = 0.15 p.u.,  MVAgiven = 40, MVAnew = 100, kVgiven = 33
kVnew = ?
  Base kV on LT side of transformer T1

  = base kV on HT side
LT voltage rating

HT voltage rating
¥

 Base kV on LT side of transformer T1 = 220
33

220
kV¥ = 33

 kVnew = 33 kV

 Xp.u.(new) = 0.15
33

33
p.u.¥ Ê

ËÁ
ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =

2 100

40
0 375.

Reactance of the generator G

  X Xp.u.(new) p.u.(given)
given

new

new

give

=  
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥
2

nn

Ê
ËÁ

ˆ
¯̃

Xp.u.(given) = 0.2 p.u., MVAgiven = 40, MVAnew = 100, kVgiven = 25, 
kVnew = 33

  X p.u.(new)  p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 2

25

33

100

40
0 287

2

. .
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Reactance of transformer T2 (primary side)

X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

Xp.u.(given) = 0.15 p.u.,  MVAgiven = 30, MVAnew = 100, kVgiven = 11,
kVnew = ?
  Base kV on LT side of transformer T2 

  = base kV on HT side
LT voltages rating

HT voltage rating
¥

 Base kV on LT side of transformer T1 = 220
11

220
kV¥ = 11

 kVnew = 11 kV

 Xp.u.(new) = 0 15
11

11

100

30
0 5

2

. .¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = p.u.

Reactance of motor M

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

Xp.u.(given) = 0.3 p.u., MVAgiven = 50, MVAnew = 100, kVgiven = 11,
kVnew = 11

  X p.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 3

11

11

100

50
0 6

2

. .

Reactance diagram (Figure 1.6)

Figure 1.6 Reactance diagram of power system of Example 1.3.

EXAMPLE 1.4 Draw the reactance diagram for the power system shown 
in Figure 1.7. Neglect the resistance and use a base of 50 MVA and 13.8 kV 
on generator G1.

G1 : 20 MVA, 13.8 kV, X''	= 20%
G2 : 30 MVA, 18.0 kV, X'' = 20%
G3 : 30 MVA, 20.0 kV, X"	= 20%
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T1 : 25 MVA, 220/13.8 kV, X = 10%
T2 : 3 single phase unit each rated 10 MVA, 127/18 kV, X = 10%
T3 : 35 MVA, 220/22 kV, X = 10%

Determine the new values of per unit reactance of G1, T1, transmission line 1, 
transmission line 2, T2, G2, T3 and G3.

Figure 1.7 Single line diagram of Example 1.4.

Solution:
Base MVA, MVAnew = 50 MVA
Base kV, kVnew = 13.8 kV

Reactance of generator G1

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

 

Xp.u.(given) = 0.2 p.u.,  MVAgiven = 20, MVAnew = 50,  kVgiven = 13.8,
kVnew = 13.8

\  X jp.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 2

13 8

13 8

50

20
0 5

2

.
.

.
.

Reactance of transformer T1 (primary side)

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

Xp.u.(given) = 0.1 p.u., MVAgiven = 25, MVAnew = 50,  kVgiven = 13.8, 
kVnew = 13.8



16 Electrical Power Systems: Analysis, Security and Deregulation

  X jp.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 1

13 8

13 8

50

25
0 2

2

.
.

.
.

Reactance of the transmission line j80 W

 Per unit reactance of the transmission line = 
actual reactance, 

base reactance,

W
W

Actual reactance = 80 W

  Base kV on HT side of transformer T1 

  = base kV on LT side
HT voltage rating

LT voltage rating
¥

Base kV on HT side of transformer T1 = 13 8
220

13 8
220.

.
¥ = kV

 kVnew = 220 kV

 Base impedance = 
( )kV

MVA
new

new

2 2220

50
968= = W

 Per unit reactance of the transmission line = 
actual reactance,

base reactance,

W
W

  = 80

968
0 0826= j . p.u.  

Reactance of the transmission line j100 W

  Per unit reactance of the transmission line = 
actual reactance, 

base reactance,

W
W

Actual reactance = 100 W

  Base kV on HT side of transformer T1 

  = base kV on LT side
HT voltage rating

LT voltage rating
¥

 Base kV on HT side of transformer T1 = 13 8
220

13 8
220.

.
¥ = kV

 kVnew = 220 kV

 Base impedance = 
( )kV

MVA
new

new

2 2220

50
968= = W

 Per unit reactance of the transmission line = 
actual reactance,

base reactance,

W
W

  = 
100

968
0 1033= j . p.u.
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Reactance of transformer T2 (primary side)

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

 Xp.u.(given) = 0.1 p.u.

 Y/D connection; voltage rating: 3
127

18

220

18
¥ =kV kV

MVAgiven =  3  10 = 30, MVAnew = 50, kVgiven = 220, kVnew = 220

   X jp.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 1

220

220

50

30
0 1667

2

. .

Reactance of generator G2

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

Xp.u.(given) = 0.2 p.u., MVAgiven = 30, MVAnew = 50,  kVgiven = 18,
kVnew = ?
  Base kV on LT side of transformer T2 

  = base kV on HT side
LT voltage rating

HT voltage rating
¥

 Base kV on LT side of transformer T2 = 220
18

220
18¥ = kV

 kVnew = 18 kV

 Xp.u.(new) = 0 2
18

18

50

30

2

. ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃  = j0.333 p.u.

Reactance of transformer T3 (secondary side)

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

Xp.u.(given) = 0.1 p.u., MVAgiven = 35, MVAnew = 50,  kVgiven = 220,
kVnew = 220

Xp.u.(new) = 0 1
220

220

50

35

2

. ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃  = j0.1429 p.u.

Reactance of generator G3

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃
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Xp.u.(given) = 0.2 p.u., MVAgiven = 30, MVAnew = 50,  kVgiven = 20, kVnew = ?
      Base kV on LT side of transformer T3

  = base kV on HT side
LT voltage rating

HT voltage rating
¥

 Base kV on LT side of transformer T3 = 220
22

220
22¥ = kV

 kVnew = 22 kV

 Xp.u.(new) = 0 2
20

22

50

30

2

. ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃  = j0.2755 p.u.

Reactance diagram (Figure 1.8)

Figure 1.8 Reactance diagram of power system of Example 1.4.

EXAMPLE 1.5 A simple power system is shown in Figure 1.9. Redraw this 
system where the per unit reactance of the components is represented on a 
common 5000 VA base and common system base voltage of 250 V.

Figure 1.9 A simple power system of Example 1.5.

Determine the new values of per unit reactance of G1, G2, T1, transmission 
line, T2, and load.
Solution:

Base MVA, MVA new = 5000 VA = 5 MVA
Base kV, kVnew = 250 V = 0.25 kV
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Reactance of generator G1

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

 

Zp.u.(given) = 0.2 p.u., MVAgiven = 1, MVAnew = 5,  kVgiven = 0.25,
kVnew = 0.25

  Z jp.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 2

0 25

0 25

5

1
1 0

2

.
.

.
.

Reactance of generator G2

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

 

Zp.u.(given) = 0.3 p.u., MVAgiven = 2, MVAnew = 5,  kVgiven = 0.25, 
kVnew = 0.25

  X jp.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 3

0 25

0 25

5

2
0 75

2

.
.

.
.

Reactance of transformer T1 (primary side)

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

Xp.u.(given) = 0.2 p.u., MVAgiven = 4, MVAnew = 5,  kVgiven = 0.25,
kVnew = 0.25

  X jp.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 2

0 25

0 25

5

4
0 25

2

.
.

.
.

Impedance of transmission line Z = 40 + j150 W

 Per unit impedance of the transmission line = actual impedance, 

base impedance,

W
W

Actual impedance = (40 + j150) W

  Base V on HT side of transformer T1

  = base V on LT side
HT voltage rating

LT voltage rating
¥

 Base V on HT side of transformer T1 = 250
800

250
800¥ = V

 Vnew = 800 V

 Base impedance = 
(V )

VA
new

new

2 2800

5000
128= = W

 Per unit impedance of the transmission line = 
actual impedance,

base impedance,

W
W
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= 40 150

128

+ j  = 0.3125 + j1.17 p.u.

Reactance of transformer T2 (primary side)

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

 

 Base kV on LT side of transformer T2

  = Base kV on HT side
LT voltage rating

HT voltage rating
¥ = ¥ =800

500

1000
4400 0 4= . kV

Xp.u.(given) =  0.06 p.u., MVAgiven = 8, MVAnew = 5,  kVgiven = 0.5,
kVnew = 0.4

  X jp.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 06

0 5

0 4

5

8
0 0585

2

.
.

.
.

Reactance diagram (Figure 1.10)

Figure 1.10 Reactance diagram of power system of Example 1.5.

EXAMPLE 1.6 The single line diagram of a three-phase power system is 
shown in Figure 1.11. Select a common base of 100 MVA and 13.8 kV on 
the generator side. Draw the per unit impedance diagram with new values per 
unit reactances.

Figure 1.11 Single line diagram of power system of Example 1.6.

G : 90 MVA, 13.8 kV, X = 18%
T1 : 50 MVA, 13.8/220 kV, X = 10%
T2 : 50 MVA, 220/11 kV, X = 10%
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T3 : 50 MVA, 13.8/132 kV, X = 10%
T4 : 50 MVA, 132/11 kV, X = 10%
M : 80 MVA, 10.45 kV, X = 20%
Load :  57 MVA, 0.8 p.f lagging at 10.45 kV
Line 1 = j50 W; Line 2 = j70 W

Solution:
Base MVA, MVAnew = 100 MVA
Base kV, kVnew = 13.8 kV

Reactance of generator G1

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

Xp.u.(given) = 0.18 p.u.,  MVAgiven = 90, MVAnew = 100, kVgiven = 13.8,
kVnew = 13.8

  X jp.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 18

13 8

13 8

100

90
0 2

2

.
.

.
.

Reactance of transformer T1 (primary side)

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

Xp.u.(given) = 0.1 p.u., MVAgiven = 50, MVAnew = 100, kVgiven = 13.8,
kVnew = 13.8

  X jp.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 1

13 8

13 8

100

50
0 2

2

.
.

.
.

Reactance of transmission line j50 W

 Per unit reactance of the transmission line = 
actual reactance, 

base reactance,

W
W

Actual reactance = 50 W

 Base kV on HT side of transformer T1

  = base kV on LT side
HT voltage rating

LT voltage rating
¥

 Base kV on HT side of transformer T1 = 13 8
220

13 8
220.

.
¥ = kV

 kVnew = 220 kV

 Base impedance = 
( )kV

MVA
new

new

2 2220

100
484= = W
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 Per unit reactance of the transmission line = 
actual reactance,

base reactance,

W
W

  = 
50

484
0 1033= j . p.u.

Reactance of transformer T2 (secondary side)

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

 

Xp.u.(given) = 0.1 p.u., MVAgiven = 50, MVAnew = 100,  
kVgiven = 220,
kVnew = 220

  X jp.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 1

220

220

100

50
0 2

2

. .

Reactance of transformer T3 (primary side)

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

 

Xp.u.(given) = 0.1 p.u., MVAgiven = 50, MVAnew = 100, kVgiven = 13.8,
kVnew = 13.8

  X jp.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 1

13 8

13 8

100

50
0 2

2

.
.

.
.

Reactance of transmission line j70 W

 Per unit reactance of the transmission line = 
actual reactance, 

base reactance,

W
W

Actual reactance = 70 W

  Base kV on HT side of transformer T3

  = base kV on LT side
HT voltage rating

LT voltage rating
¥

 Base kV on HT side of transformer T3 = 13 8
132

13 8
132.

.
¥ = kV

 kVnew = 132 kV

 Base impedance = 
(kV )

MVA
new

new

2

 = 
132

100
174 24

2

= . W

 Per unit reactance of the transmission line = 
actual reactance,

base reactance,

W
W

  = 70

174 24
0 4017

.
.= j  p.u.
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Reactance of transformer T4 (secondary side)

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

 

Xp.u.(given) = 0.1 p.u., MVAgiven = 50, MVAnew = 100, kVgiven = 132; 
kVnew = 132

  X jp.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 1

132

132

100

50
0 2

2

. .

Reactance of motor M

  X Xp.u.(new) p.u.(given)
given

new

2
new

given

=
kV

kV

MVA

MVA
¥

Ê
ËÁ

ˆ
¯̃

¥ ÊÊ
ËÁ

ˆ
¯̃

 

Xp.u.(given) = 0.2 p.u., MVAgiven = 80, MVAnew = 100,  
kVgiven = 10.45
kVnew = ?
  Base kV on LT side of transformer T4

  = base kV on HT side
LT voltage rating

HT voltage rating
¥

 Base kV on LT side of transformer T4 = 132
11

132
11¥ = kV

  kVnew = 11 kV

  X jp.u.(new) p.u.= ¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ =0 2

10 45

11

100

80
0 2256

2

.
.

.

The load at 0.8 p.f lagging is given by
  SL(3f) = 5736.87°
Load impedance is given by

  Z
V

S
jL

L L

L

= =
∞

= +-( ) .

.
( . . )

( )

2

3

210 45

57 36 87
1 532 1 1495

f –
W

Base impedance for the load is given by

 Base impedance = 
(kV )

MVA
new

2

new

= =11

100
1 21

2

. W

 Per unit reactance of the transmission line = 
actual reactance,

base reactance,

W
W

  = 
1 532 1 1495

1 21

. .

.

+ j

  = (1.266 + j0.95) p.u.
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Reactance diagram (Figure 1.12)

Figure 1.12 Reactance diagram of power system of Example 1.6.

1.6 Network Modelling
1.6.1 Bus Frame of Analysis

For a network with n number of nodes (buses) excluding the reference node, 
a set of following equations, one for each node can be written as
 I1 = Y11V1 + Y12V2 +  + Y1nVn
 I2 = Y21V1 + Y22V2 +  + Y2nVn

 	 	 	


	 	 	


	 	 	 	 	 	


 In = Yn1V1 + Yn2V2 +  + YnnVn (1.15)

i.e.  I Y V i ni
m

n

im m= =
=

Â
1

1 2 3, , ...,  (1.16)

where Ii is the current entering the ith bus
 Vm is the voltage to reference of bus m
 Yim is the admittance between the buses i and m.

In matrix form, 

I

I

In

1

2



È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 = 

Y Y Y

Y Y Y

Y Y Y

V

V

V

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2





   





È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

È

Î

Í
ÍÍ
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 (1.17)

i.e.   Ibus = Ybus Vbus (1.18)
where Ybus is the bus admittance matrix.

i.e.   Ybus = 

Y Y Y

Y Y Y

Y Y Y

n

n

n n nn

11 12 1

21 22 2

1 2





   



È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 (1.19)

Now,  Vbus = Zbus Ibus (1.20)
where Zbus is the bus impedance matrix.
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The diagonal elements of bus admittance matrix Y11, Y22, ..., Ynn are called 
the short-circuit driving point admittances of the system bases, and the off-
diagonal elements are called the short-circuit transfer admittances. Similarly, 
the diagonal elements of bus impedance matrices Z11, Z22, ..., Znn are called 
open circuit driving point impedances of the system bases, and the off-diagonal 
elements are known as open circuit transfer impedances.

To find out the elements of Zbus and Ybus, we need 
 1. Primitive network
 2. Graph theory
 3. Incidence matrices

1.6.2 Primitive Network

A network element may in general contain active and passive components. 
Network components are represented both in impedance form and in admittance 
form as shown in Figure 1.13.

Figure 1.13 Primitive network.

In Figure 1.13, we have used the following notations:
 vpq = voltage across the element p-q
 epq = voltage source in series with the element p-q
 ipq = current through the element p-q
 zpq = self impedance of the element p-q
 jpq = current source in parallel with the element p-q
 ypq = self admittance of the element p-q

In steady state condition, the variables vpq and ipq and the parameters 
of the elements zpq and ypq are real numbers for dc and complex numbers 
for ac.
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The performance equation of the element in impedance form is

  vpq + epq = zpq 	 ipq (1.21)

The performance equation of the element in admittance form is 

  ipq + jpq = ypq 	vpq (1.22)

The parallel current source in admittance form is related to the series voltage 
source in impedance form as

 ipq + jpq = ypq 	vpq

or jpq = –ipq + (ypq 	vpq)

or jpq = -
+Ê

ËÁ
ˆ

¯̃
+ ¥

v e

z
y v

pq pq

pq
pq pq( )  

\ jpq = – ypq × epq (1.23)

A set of unconnected elements is defined as a primitive network. The 
performance equations of a primitive network can be derived from the above 
equations by expressing the variables as vectors and parameters as matrices. 

The performance in impedance form v + e = [z] i (1.24)
The performance in admittance form i + j = [y]v (1.25)

Here [z] and [y] are primitive impedance and primitive admittance matrices, 
respectively, of the network.

Figure 1.14 Mutual coupling between the elements pq and rs.

The mutual coupling between elements pq and rs is shown in Figure 1.14. 
The diagonal element of the matrix [z] or matrix [y] of the primitive network 
is the self impedance zpq, pq or self admittance ypq, pq. The off-diagonal element 
is the mutual impedance zpq, rs or mutual admittance ypq, rs between the elements 
pq and rs.

1.6.3 Network Graph Theory

The geometrical structure of a network is sufficient to replace the network 
components by a single line segment irrespective of the characteristic of the 
components. These line segments are called element and their terminals are 
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called nodes. A node and an element are incident if the node is the terminal 
of the element. Nodes can be incident to one or more elements.

A graph shows the geometrical interconnection of the element of a network. 
The rank of a graph is n – 1, where n is the number of nodes in the graph.  
A subgraph is any subset of the graph. If each element of the connected graph 
is assigned a direction, it is then called oriented graph. A graph is said to be 
planar, if it can be drawn without crossover of edges, otherwise it is called 
non-planar.

Figure 1.15(a) shows the single line diagram of a simple power network 
consisting of generating stations, transformer, transmission lines and loads. 
Figure 1.15(b) shows the positive sequence network of the system depicted 
in Figure 1.15(a). The oriented connected graph is shown in Figure 1.16 for 
the same system.

Figure 1.15(a) Sample single line diagram.

Figure 1.15(b) Positive sequence network diagram.

Figure 1.16 Oriented graph.
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Tree and co-tree
A tree is a connected subgraph of a network which consists of all nodes of the 
original graph but no closed path. The graph of a network may have a number 
of trees. In general, if a tree contains n nodes, then it has (n – 1) branches.

In forming a tree for a given graph, certain branches are removed. 
The branches thus opened are called links or link branches. The link for 
Figure  1.17, for example, is 5, 6 and 7. The set of all links of a given tree 
is called the co-tree of the graph.

Figure 1.17 Tree of the representative power system of Figure 1.15(a).

The relation between the number of nodes and the number of branches 
in a tree is given by
  b = n – 1 (1.26)
If e is the total number of elements, then the number of links l of a connected 
graph with branches b is given by
  l = e – b (1.27)
Hence, from Eq. (1.26), the number of links l can be written as
  l = e – n + 1 (1.28)
A tree and the corresponding co-tree of the graph for the system are shown 
in Figure 1.17 and Figure 1.18.

Figure 1.18 Co-tree of the representative power system of Figure 1.15(a).
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1.6.4 Incidence Matrices

Incidence matrices are mostly used in graph theory. They are significant in 
developing the different networks matrices such as bus admittance matrix, bus 
impedance matrix using singular or non-singular transformation.

The following incidence matrices are of interest in power system analysis.
 1. Element–node incidence matrices
 2. Bus incidence matrix or element–bus incidence matrix 
 3. Basic loop incidence matrix
 4. Basic cut-set incidence matrix

Element–node incidence matrices ( )A

The incidence of elements to nodes in a connected graph is shown in Figure 1.15 
by the element–node incidence matrix. The elements of the matrix are as follows:
 aij = 1 if the ith element is incident to and oriented away from the jth node
 aij = –1 if the ith element is incident to and oriented towards the jth node
 aij = 0 if the ith element is not incident to the jth node

The dimension of the matrix A   is e × n, where e is the number of elements 
and n is the number of nodes in the graph.

   n 0 1 2 3 4 
   e
   1 1 –1 0 0 0
   2 1 0 –1 0 0
 A  = 3 1 0 0 0 –1
   4 0 0 0 –1 1
   5 0 0 1 –1 0
   6 0 1 –1 0 0
   7 0 0 1 0 –1
Since

 a i nij
j=
Â = =

0

4

0 1 2 3, , , ... ,

The columns of A  are linearly dependent. Hence, the rank of A n< .

Bus incidence matrix or element–bus incidence matrix (A)
Any node of a connected graph can be selected as the reference node. Then, the 
variables of the other nodes are referred to as buses. The matrix obtained from 
the element node incident matrix ( )A  by deleting the columns corresponding to 
the reference node is the element bus incidence matrix or bus incidence matrix. 

The dimension of the matrix A is e × (n – 1) or e × b. Node 0 is the 
reference node.
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   Bus 1 2 3 4 
   e
   1 –1 0 0 0
   2 0 –1 0 0
 A = 3 0 0 0 –1
   4 0 0 –1 1
   5 0 1 –1 0
   6 1 –1 0 0
   7 0 1 0 –1

Basic loop incidence matrix (C)
The incidence of elements to basic loops of a connected graph is shown in 
Figure 1.19 by the basic loop incidence matrix. The elements of this matrix are: 
 Cij = 1 if the ith element is incident to and oriented in the same direction 

as the jth basic loop
 Cij = –1 if the ith element is incident to and oriented in the opposite direction 

as the jth basic loop
 Cij = 0 if the ith element is not incident to the jth basic loop

Figure 1.19 Basic loops E, F and G.

  Basic loop E F G
 Element
  1 0 1 0
  2 1 –1 1
  C =  3 –1 0 –1
  4 –1 0 0
  5 1 0 0
  6 0 1 0
  7 0 0 1

Basic cut-set incidence matrix (D) 
The incidence of elements to basic cut-set of a connected graph is shown 
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in Figure 1.20 by the basic cut-set incidence matrix. The elements of this 
matrix are:

 dij = 1 if the ith element is incident to the jth basic cut-set and oriented 
in the same direction of the jth basic cut-set

 dij = 1 if the ith element is incident to the jth basic cut-set and oriented 
in the opposite direction of the jth basic cut-set

 dij = 0 if the ith element is not incident to the jth basic cut-set

Figure 1.20 Basic cut-set of connected graph.

  Basic cut-set A B C D
 Element
  1 1 0 0 0
  2 0 1 0 0
  3 0 0 1 0
 D = 4 0 0 0 1
  5 0 –1 1 1
  6 –1 1 0 0
  7 0 0 1 0

1.7 Formation of Bus Admittance Matrix [Ybus]

The matrix consisting of the self admittance and the mutual admittance of the 
network of the power system is called the bus admittance matrix Ybus. We will 
discuss here the following two methods by formulation of [Ybus].
 • Direct inspection method
 • Singular transformation method (Primitive network)

1.7.1 Direct Inspection Method

Consider a simple three bus system (Figure 1.21).
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Figure 1.21 Simple three bus system.

Let I1, I2 and I3 denote the current flowing into the buses. Applying KCL 
at each node:

At node 1:
 I1 = I11 + I12 + I13 (1.29)
  = y11V1 + (V1 – V2)y12 + (V1 – V3)y13
  = y11V1 + y12V1 – y12V2 + y13V1 – y13V3
  = V1(y11 + y12 + y13) – y12V2 – y13V3
\ I1 = V1Y11 + V2Y12 + V3Y13 (1.30)
where
 Y11 = y11 + y12 + y13 (Shunt charging admittance at bus) (1.31)
 Y12 = –y12; Y13 = –y13 (1.32)

At node 2:
 I2 = I22 + I21 + I23 (1.33) 
  = y22V2 + (V2 – V1)y21 + (V2 – V3)y23
  = y22V2 + y21V2 – y21V1 + y23V2 – y23V3
  = –y21V1 + V2(y22 + y21 + y23) – y23V3
\ I2 = V1Y21 + V2Y22 + V3Y23 (1.34)
where
 Y22 = y21 + y22 + y23 (Shunt charging admittance at bus) (1.35)
 Y21 = –y21; Y23 = –y23 (1.36)

At node 3:
 I3 = I33 + I31 + I32 (1.37)
  = y33V3 + (V3 – V1)y31 + (V3 – V2)y32
  = y33V3 + y31V3 – y31V1 + y32V3 – y32V2
  = –y31V1 – y32V2 + V3(y33 + y31 + y32)
\ I3 = V1Y31 + V2Y32 + V3Y33 (1.38)
where
 Y33 = y31 + y32 + y33 (Shunt charging admittance at bus) (1.39)
 Y31 = –y31; Y32 = –y32 (1.40)
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The obtained nodal equations are now represented in matrix form as

 
I

I

I

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = 
Y Y Y

Y Y Y

Y Y Y

V

V

V

11 12 13

21 22 23

31 32 33

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 (1.41)

i.e. [Ibus] = [Ybus] [Vbus] (1.42)

or Ii = Y V i nij j
j

n

=
Â =

1

1 2 3, , , ...,  (1.43)

Self admittance: The terms Yii are self admittance of respective nodes and 
represent the algebraic sum of all the admittances connected to that node. Each 
diagonal term in the [Ybus] matrix is the self admittance term.

  Y yii ij
j

n

=
=

Â
1

 (1.44)

Mutual admittance: The mutual admittance between two buses is the negative 
of the sum of all the admittances connected directly between these two buses. 
All the non-diagonal terms in the [Ybus] matrix are the mutual admittance terms.
  Yij = –yij (1.45)

EXAMPLE 1.7 Determine the bus admittance matrix [Ybus] of the representative 
power system shown in Figure 1.22. Data for this system is given in Table 1.1.

Figure 1.22 Representative power system: Example 1.7.

Table 1.1 Data for Example 1.7

Bus code i–k Impedance, Zik Line charging yij/2 
1–2 0.02 + j0.06 j0.03
1–3 0.08 + j0.24 j0.025
2–3 0.06 + j0.18 j0.020

Solution:

 y11 = 
¢

+
¢

= + =
y y

j j j12 13

2 2
0 03 0 025 0 055. . .

 y22 = 
¢

+
¢

= + =
y y

j j j21 23

2 2
0 03 0 020 0 050. . .

 y33 = 
¢

+
¢

= + =
y y

j j j31 32

2 2
0 025 0 020 0 045. . .
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 y12 = 
1 1

0 02 0 06
5 15

10z j
j=

+
= -

. .

 y13 = 
1 1

0 08 0 24
1 25 3 75

13z j
j=

+
= -

. .
. .

 y23 = 
1 1

0 06 0 18
1 667 5

23z j
j=

+
= -

. .
.

 Y11 = y11 + y12 + y13 = j0.055 + 5 – j15 + 1.25 – j3.75 = 6.25 – j18.695
 Y12 = Y21 = –y12 = –5 + j15
 Y13 = Y31 = –y13 = –1.25 + j3.75
 Y22 = y22 + y21 + y23 = j0.050 + 5 – j15 + 1.667 – j5 = 6.667 – j19.95
 Y23 = Y32 = –y23 = –1.667 + j5
 Y33 = y33 + y31 + y32 = j0.045 + 1.25 – j3.75 + 1.667 – j5 
  = 2.917 – j8.705

\ Ybus = 
Y Y Y

Y Y Y

Y Y Y

11 12 13

21 22 23

31 32 33

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

  = 
6 25 18 695 5 15 1 25 3 75

5 15 6 667 19 95 1 667 5

1

. . . .

. . .

- - + - +
- + - - +

-

j j j

j j j

.. . . . .25 3 75 1 667 5 2 917 8 705+ - + -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙j j j  

EXAMPLE 1.8 Determine the [Ybus] matrix of the representative power 
system network diagram shown in Figure 1.23.

Figure 1.23 Representative power system: Example 1.8.

Solution:
 y11 = 1 1

1 0
1 0

11z j
j= = -

.
.
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 y22 = 1 1

0 8
1 25

22z j
j= = -

.
.

 y12 = 1 1

0 4
2 5

12z j
j= = -

.
.  

 y13 = 
1 1

0 2
5

13z j
j= = -

.

 y23 = 
1 1

0 2
5

23z j
j= = -

.
 

 y34 = 
1 1

0 08
12 5

34z j
j= = -

.
.

 Y11 = y10 + y12 + y13 = –j1.0 – j2.5 – j5 = – j8.5
 Y12 = Y21 = –y12 = j2.5
 Y13 = Y31 = –y13 = j5
 Y22 = y20 + y21 + y23 = –j1.25 – j2.5 – j5 = –j8.75
 Y23 = Y32 = –y23 = j5
 Y33 = y31 + y32 + y34 = –j5 – j5 – j12.5 = –j22.5
 Y44 = y43 = –j12.5

\ Ybus = 

-
-

- -
- -

È

Î

Í
j j j

j j j

j j j j

j j

8 5 2 5 5 0

2 5 8 75 5 0

5 5 22 5 12 5

0 0 12 5 12 5

. .

. .

. .

. .

ÍÍ
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

EXAMPLE 1.9 Determine the [Ybus] matrix of the representative power 
system network diagram shown in Figure 1.24.

Verify the result using MATLAB program.

Figure 1.24 Representative power system: Example 1.9.
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Solution:
 y11 = 0.005
 y22 = 0.010
 y33 = 0.007
 y12 = 10 – j5
 y13 = 15 – j10
 y23 = 20 – j15
 Y11 = y11 + y12 + y13 = 0.005 + 10 – j5 + 15 – j10 = 25.0050 – j15
 Y22 = Y21 = –y12 = –10 + j5
 Y13 = Y31 = –y13 = –15 + j10
 Y22 = y22 + y21 + y23 = 0.010 + 10 – j5 + 20 – j15 = 30.010 – j20
 Y23 = Y32 = –y23 = –20 + j15
 Y33 = y33 + y31 + y32 = 0.007 + 15 – j10 + 20 – j15 = 35.0070 – j25

\  Ybus = 
25 0050 15 10 5 15 10

10 5 30 010 20 20 15

15 10 20

.

.

- - + - +
- + - - +
- + - +

j j j

j j j

j jj j15 35 0070 25. -
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˙

1.7.2 MATLAB Program for [Ybus] Formation Using 
the Direct Inspection Method

clear all;
clc;
close all;
n=input(‘\n\n Enter the number of buses n=’);
b=input(‘\n\n press your:\n>>1.for impedance  2.for admittance 
\n’);
if (b==2)
 fprintf(‘\n\n Enter the admittance value:’);
end
if(b==1)
 fprintf(‘\n\n Enter the impedance value:’);
end
for i=1:n
 for j=i+1:n
 a(i,j)=0;
 fprintf(‘\n Enter the bus %d to bus %d values:’,i,j);
 a(i,j)=input(‘’);
 if(b~=2&a(i,j)~=0)
  a(i,j)=1/a(i,j);
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 end
 a(j,i)=a(i,j);
 end
end
d=input(‘\n\n  Is there any admittance value in source?\n 
Press “1” for yes and “2” for no:’);
if (d==1)
 for i=1:n
  fprintf(‘\n Enter for bus %d:’,i);
  a(i,i)=input(‘’);
 end
end
for i=1:n
  for j=1:n
   if(i~=j)
    a(i,i)=a(i,i)+a(i,j);
    y(i,j)=-a(i,j);
   end
  end
  y(i,i)=a(i,i);
end
fprintf(‘\n\n Y bus=:>>\n\n’);
display(y);

output:
———--

Enter the number of buses n=3
 press your:
>>1.for impedance  2.for admittance
 2
 Enter the admittance value:
 Enter the bus 1 to bus 2 values:10-5j
 Enter the bus 1 to bus 3 values:15-10j
 Enter the bus 2 to bus 3 values:20-15j
  Is there any admittance value in source?
 Press “1” for yes and “2” for no:1
 Enter for bus 1:.005
 Enter for bus 2:.010
 Enter for bus 3:.007
 Y bus=:>>
y =
 25.0050 – 15.0000i – 10.0000 + 5.0000i – 15.0000 + 10.0000i
 –10.0000 + 5.0000i  30.0100 – 20.0000i – 20.0000 + 15.0000i
 –15.0000 + 10.0000i – 20.0000 + 15.0000i  35.0070 – 25.0000i



38 Electrical Power Systems: Analysis, Security and Deregulation

1.7.3 Formation of [Ybus] Using Power World Simulator

 1. Start the Power World Simulator by clicking the icon 
 2. Go to file and click New Case and new window will open

 3. Select the draw tab which is on the top.

 4. Using the option Network in the menu draw the one line diagram.
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 5. The input data for Buses, Generators, Loads, Transmission lines can 
be given by selecting the bus in the Network menu and left clicking 
the mouse in the new window opened.

 6. The bus can be shown as

 7. The same procedure is followed to draw generators, loads, etc.
 8. Then the one line diagram for the 5 bus system can be obtained as

 9. Go to Case information tab in the menu and select Solution details in 
the network tab, and select YBus.
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 10. Then the matrix [Ybus] will be displayed as

1.7.4 Formation of [Ybus] Using PSS/E

Let us consider a sample of 5 a bus system.
Bus data:

Machine data:
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Load data:

Branch data:

In the network data we have to specify bus data, machine data, load data, 
fixed shunt data, etc., and save as six.sav file

Using slider file to create one line diagram
 1. First we need to load a file as shown above.
 2. Open PSS/E.
 3. Go to file, and click new as shown below.

 4. After clicking New the following will be displayed:

  select Diagram and click OK.
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 5. A new diagram will be displayed.

 6. A bus can be imported from the data (*sav) file into the diagram. For 
this select Auto Draw function on the toolbar.

 7. Click on an open place in a blank diagram, the following will be 
displayed:

 8. Next click Select in the select bus window or type the desired bus 
number from the *sav case file (In this case bus number 1 from 
six.sav file)
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  Click OK to return to the select bus window, which will show the bus 
selected.

  Click  OK.
  Note: As previously mentioned the bus can also be typed manually to 

skip the select bus window. If a bus number is not in a *.sav file, the 
following error message will be displayed.

  click OK and enter any one of the bus numbers from *.sav file.
 9. Select bus number 1 and all devices connected to it are displayed as  

shown below:

  Select the pointer from the toolbar to exit out of the AutoDraw 
function.
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  This will help to rearrange the one-line diagram so that no wires or 
ratings are overlapping.

 10. Select all the buses one by one and try to rearrange them, the final 
diagram will be shown as:

Formation of [Ybus] using PSS/E
 1. Load a file from a *.sav file.
 2. Go to file menu and select EXPORT and then select NETWORK     

ADMITTANCE MATRIX.
 3. Admittance matrix window will be displayed as

  Select REPORT WINDOW and click OK.
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 4. [Ybus] matrix can be obtained in the report window as:

1.7.5 Singular Transformation Method

The matrix [Ybus] can be determined by using the bus incidence matrix A 
and the related variable parameters of the primitive network quantities of the 
interconnected network.

From the primitive network equation,

  i j y V+ = [ ]  (1.46)

Multiplying both sides of Eq. (1.46) by AT, we get
  A i A j A y VT T T+ = [ ]  (1.47)
According to KCL, the algebraic sum of the currents meeting at any node is 
equal to zero. Thus,
  ATi = 0 (1.48)
Similarly, ATj is equal to the sum of the current sources of an element incident 
at a node. It is a column vector. Thus,
  ATj = Ibus (1.49)
Substituting Eqs. (1.48) and (1.49) in Eq. (1.47), we have

  I A y VT
bus = [ ]  (1.50)

Power into the network is ( )
*

I ET
bus bus  and equal to the sum of powers in the 

primitive network, i.e. ( *)j VT  
The power in the primitive network

  ( ) ( *)
*

I E j VT T
bus bus =  (1.51)

Taking conjugate transpose of Eq. (1.49),

( ) ( ) ( *)
* *I A jT T T T
bus =

But A is a real matrix, so A* = A
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From the matrix property, (AT)T = A
Applying these two conditions in Eq. (1.51),

  ( ) ( *)I A jT T
bus
* =  (1.52)

Substituting Eq. (1.52) into Eq. (1.51), 

 A j ET( *) bus  = ( *)j VT  (1.53)

 AEbus  = V  (1.54)

Substituting V from Eq. (1.54) into Eq. (1.50),

 I bus  = A y AET [ ] bus  (1.55)

\ 
I

E

bus

bus
 = Y A y AT

bus = [ ]  (1.56)

EXAMPLE 1.10 Form the matrix [Ybus] using the singular transformation 
method for the system shown in Figure 1.24. The impedance data is given in 
the Table 1.2. Take (1) as the reference node.

Figure 1.24 Sample power system of Example 1.10.

Table 1.2 Impedance data of Example 1.10

Element No. Self
Bus code Impedance

1  1 – 2 (1) 0.6
2  1 – 3 0.5
3  3 – 4 0.5
4  1 – 2 (2) 0.4
5  2 – 4 0.2

Solution: The oriented graph of the system is shown in Figure 1.25.

Figure 1.25 Oriented graph of the system shown in Figure 1.24.
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Take (1) as the reference node,

 A  = 

1 1 0 0

1 0 1 0

0 0 1 1

1 1 0 0

0 1 0 1

-
-

-
-

-

È
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Í
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˘

˚

˙
˙
˙
˙
˙
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 A = 

-
-

-
-

-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
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1 0 0

0 1 0

0 1 1

1 0 0

1 0 1
and

 AT = 
- -

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0 1 1

0 1 1 0 0

0 0 1 0 1

From the given impedance data,

  

Z

j

j

j

j

j

primitive =

È

Î
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Í
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Í

0 6 0 0 0 0

0 0 5 0 0 0

0 0 0 5 0 0

0 0 0 0 4 0

0 0 0 0 0 2

.

.

.

.

.ÍÍ

˘

˚

˙
˙
˙
˙
˙
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Therefore,

  

Y Z

j

j

j

j
primitive primitive= =

-
-

-
-

-[ ]

.

.

1

1 667 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 55 0

0 0 0 0 5-

È
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Í
Í
Í
Í
Í
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˙
˙
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Hence
 Ybus = [AT] [Yprimitive] [A]
Therefore,

 Ybus = 
-

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

j j

j j

j j j

9 167 0 5

0 4 2

5 2 7

.
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EXAMPLE 1.11 Form the matrix [Ybus] using the singular transformation 
method for the system shown in Figure 1.26. The impedance data is given in 
Table 1.3. Take (1) as the reference node.

Figure 1.26 Sample power system of Example 1.11.

Table 1.3 Impedance data of Example 1.11
Element no. Self Mutual

Bus code Impedance Bus code Impedance
1 1–2 0.5

1–2 0.12 1–3 0.6
3 3–4 0.4
4 2–4 0.3

Solution: The oriented graph to the system is shown in Figure 1.27.

Figure 1.27 Oriented graph of the system shown in Figure 1.26.

Take (1) as the reference  node,

 A  = 

1 1 0 0

1 0 1 0

0 0 1 1

0 1 0 1

-
-

-
-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

Hence,

 A = 

-
-

-
-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1 0 0
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0 1 1

1 0 1
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and

  AT =
-

-
- -
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1 0 0 1

0 1 1 0

0 0 1 1

 

From the given impedance data,
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Therefore,
  Yprimitive = [Zprimitive]–1

Consider the 2  2 matrix

  
j j

j j

j j

j j

j0 5 0 1

0 1 0 6
1

0 29

0 6 0 1

0 1 0 5

1. .

. . .

. .

. .
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Now,
  Ybus = [AT] [Yprimitive] [A]
Therefore,

  Y

j j j

j j j

j j j
bus =

-
-

-

5 4019 0 3448 3 333

0 3448 4 224 2 5

3 333 2 5 5
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1.8 Solution Technique

The mathematical model of power system networks used for the purposes of 
load flow studies, short circuit studies and stabilities studies, is a set of linear 
or nonlinear algebraic equations or differential equations or both. But since the 
digital computer performs only four basic operations of addition, subtraction, 
multiplication and division, hence in order to solve these mathematical equations 
on the digital computer, it is necessary to transform these linear or nonlinear 
algebraic and differential equations to a set of four operations of addition, 
subtraction, multiplication and division with the help of numerical methods.
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Solution of algebraic equations
There is a different numerical technique for the solution of algebraic equations. 
These algebraic equations can be expressed in the following form.
 f1(x1, x2, ..., xn) = y1

 f2(x1, x2, ..., xn) = y2 (1.57)

                                                                       

 fn(x1, x2, ..., xn) = yn

Here fi are the functions relating the unknown variables xi, with the known 
constants yi. If any one of the fi is nonlinear, the above algebraic equations 
form a set of nonlinear algebraic equations (equations involving power terms 
or the product of variables xi). However, if all of the fis are linear, then the 
above algebraic equations form a set of linear algebraic equations.

The linear algebraic equations can be expressed as follows:
  [A]X = Y (1.58)
where,
 [A] =  the coefficient matrix of the physical system.
 X = a column vector of unknowns
 Y = a column vector of known constants.
Equation (1.58) can then be expressed as
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a a a

a a a

x

x

x

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2





 





È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

È

Î

Í
Í
Í
ÍÍ
Í

˘

˚

˙
˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

y

y

yn

1

2



 (1.59)

In order to choose a numerical method to solve a set of algebraic equations 
on the digital computer, the following points must be considered:
 (i) Number of steps needed to obtain the solution, i.e. speed at which 

the solution is obtained.
 (ii) Resultant accuracy 
 (iii) Computer memory limitations.

The numerical techniques to solve a set of linear algebraic equations can 
be broadly classified into two main headings, namely.
 (i) Direct method or exact method 
 (ii) Iterative technique

In the case of direct method, the solution can be obtained in a distinct 
number of steps. However, the number of steps required to obtain the solution 
depends upon the problem size, i.e. the order of the coefficient matrix [A] and 
the numerical method used. Hence before use, it is possible to compare different 

¸

˝
ÔÔ

˛
Ô
Ô
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direct methods since the number of steps required to obtain the solution is 
known in advance. The only error is the loss of significant digits which is not 
bounded. The solution will be far from nominal solution because the round-off 
error goes on getting accumulated after each step. The round-off error results 
due to the subtraction or division by two numbers which are nearly equal. If 
the round-off error is bounded, the solution obtained will be nearly exact. This 
is why this method is also known as exact method.

Direct methods are:
 (i) Cramer’s rule
 (ii) Gauss elimination method and
 (iii) Gauss–Jordan elimination method

In the case of iterative techniques, the solution is obtained in an orderly 
fashion starting from its initial approximate solution, i.e. initial guess. Here we 
start with the initial approximate solution. Thus the rate of convergence, i.e. 
the number of steps needed to obtain solution depends upon the initial guess, 
problem size (number of equations) and the iterative the techniques used. Thus 
depending upon these factors, the approximate solution may converge to the 
nominal solution, diverge or oscillate about the nominal solution. The round-off 
error in this case goes on getting corrected in each step, .i.e. in each iteration.

The iterative techniques are:
 (i) Gauss iterative technique
 (ii) Gauss–Seidel iterative technique
 (iii) Newton–Raphson method.

1.8.1 Sparse Matrix Techniques for Large-Scale 
Power Systems

The term “sparsity” is used to indicate the relative absence of certain problem 
interconnections. Mathematically, we can define:

Given a finite discrete sample space W and a nonempty set of sample S 
such that the cardinality | S | of S is small compared to cardinality | W	| of W, 
i.e. | S |  | W	| is then said to be sparse with respect to S.

Let
 n = | S |
 N = | W	|

The efficient handling of sparse matrices is at the heart of almost every 
non-trivial power systems computational problem. Engineering problems have 
two stages. The first stage is an understanding and formulation of the problem in 
precise terms. The second stage is the solution of the problem. Many problems 
in power systems result in formulations that require the use of large sparse 
matrices. The well-known problems that fit into this category include three 
classic  problems: power flow, short circuit, and transient stability. To this list 
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we can also add numerous other important system problems: electromagnetic 
transients, economic dispatch, optimal power flows, state estimation, and 
contingency studies, just to name a few. In addition, the problems that require 
finite element or finite-difference methods for their solution invariably end up in 
mathematical formulations where sparse matrices are involved. Sparse matrices 
are also important for electronic circuits and numerous other engineering 
problems. We describe sparse matrices primarily from the perspective of power 
system network, though most of the ideas and results are readily applicable to 
more general sparse matrix problems.

The key idea behind sparse matrices is computational complexity. Storage 
requirements for a full matrix increase as order n2. Computational requirements 
for many full matrix operations increase as order n3. By the very definition of 
a sparse matrix, the storage and computational requirements for most sparse 
matrix operations increase only linearly or close to linearly. Faster computers 
will help solve larger problems, but unless the speedups are of order n3 they 
will not keep pace with the advantages attainable from sparsity in the larger 
problems of the future. Thus, sparse matrices have become and will continue 
to be important. This introduction retraces some of the principal steps in the 
progress on sparse matrix theory.

Sparse system
Most of the discrete sample spaces are sparsely populated. Natural occurrences 
of sparsity are wide ranging. The following is a partial list of the sparse systems:
 (i) Networks of all kinds such as electric power, electronics and 

communications, hydraulics, etc.
 (ii) Space trusses and frames of structures.
 (iii) Roads, highways and airways connecting all the important cities of 

the world.
 (iv) Street connections  among intersections within a city.
 (v) Matrices associated with algebraic equations resulting from different 

methods in the solution of differential equations.
 (vi) Matrices arising in the discrete analysis of continuous functions.

1.8.2 Optimally Ordered Triangular Factorization

Usually, the objective in the matrix analysis of networks is to obtain the inverse 
of the matrix of coefficients of a system of simultaneous linear network equations. 
However, for large sparse systems such as those which occur in many network 
problems, the use of the inverse is very inefficient. In general, the matrix of 
the equations formed from the given conditions of a network problem is sparse, 
whereas its inverse is full. By means of an appropriately ordered triangular 
decomposition, the inverse of a sparse matrix can be expressed as a product 
of sparse matrix factors, thereby gaining an advantage in computational speed, 
storage, and reduction of round-off error. 
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The method consists of two parts:
 1. Recording the operations of triangular decomposition of a matrix such 

that repeated direct solutions based on the matrix can be obtained 
without repeating the triangularization

 2. Ordering the operations that tends to conserve the sparsity of the original 
system.

Either part can be applied independently, but the greatest benefit is obtained 
from the combined application of both parts. The first part can be applied 
to any matrix. The application of the second part, i.e. ordering to conserve 
sparsity, is limited to sparse matrices in which the pattern of nonzero elements 
is symmetric and for which an arbitrary order of decomposition does not 
adversely affect numerical accuracy. Such matrices are usually characterized 
by a strong diagonal, and ordering to conserve sparsity increases the accuracy 
of the decomposition. A large class of network problems fulfils this condition. 
Generally it is not worth considering optimal ordering unless at least 80 per 
cent of the matrix elements are zero.

Factored direct solutions
The first part of the above method shows how to derive an array of numbers from 
a nonsingular matrix A that can be used to obtain the effects of any or all of the 
following: A, A–1, AT, (AT–1), and certain two-way hybrid combinations of these 
matrices. The method is applicable to any nonsingular matrix, real or complex, 
sparse or full, symmetric or non-symmetric. This method is also applicable to 
mesh equations. Its greatest advantage is realized in problems involving large 
sparse matrices. The basic scheme is first presented for the most general case, a 
full non-symmetric matrix. Symmetry is then treated as a special case.

1.8.3 Triangular Decomposition—Gaussian Elimination

Triangular decomposition of a matrix by Gaussian elimination is described in 
many books on matrix analysis. Ordinarily, the decomposition is accomplished 
by the elimination of elements below the main diagonal in successive columns. 
For the purpose of computer programming for a sparse matrix, it is usually 
much more efficient to eliminate elements by successive rows. The development 
is based on the equation
  AX = b (1.60)
where A is a nonsingular matrix, X is a column vector of unknowns, and b is 
a known vector with at least one nonzero element, i.e.
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In the computer algorithm, A is augmented by b as shown in Eq. (1.61) for 
an nth-order system.
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˘

˚

˙
˙
˙
˙
˙

 (1.61)

The first step involves the division of the elements of the first row by a11, as 
shown in Eq. (1.62).

 a j1
1( )

 = 
1

11
1a

a j
Ê
ËÁ

ˆ
¯̃

  j = 2, n

 b1
1( )  = 

1

11
1a

b
Ê
ËÁ

ˆ
¯̃

 
(1.62)

The superscripts indicate the order of the derived system. The second step, as 
shown in Eqs. (1.63a) and (1.63b), involves elimination of a21, from the second 
row by a linear combination with the derived first row, and then dividing the 
remaining derived elements of the second row by its derived diagonal element.

  

1

0 1

12
1

13
1

1
1

1
1

23
2

2
2

2
2

1 2

a a a b

a a b

a a a

n

n

n n

( ) ( ) ( ) ( )

( ) ( ) ( )





     

nn nn na b3 

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 (1.63a)

 a j2
1( )  = a a aj j2 21 1

1- ( )   j = 2, n

 b2
1( )  = b a b2 21 1

1- ( )  (1.63b)

 a j2
2( )

 = 
1

22
1 2

1

a
a j( )

( )Ê

ËÁ
ˆ

¯̃
  j = 3, n

 b2
2( )  = 1

22
1 2

1

a
b

( )
( )Ê

ËÁ
ˆ

¯̃

The third step, as shown in Eqs. (1.64a) and (1.64b), involves elimination of 
elements to the left of the diagonal of the third row and dividing the remaining 
derived elements of the row by the derived diagonal element.

  

1

0 1

0

12
1

13
1

14
1

1
1

1
1

23
2

24
2

2
2

2
1

a a a a b

a a a b

n

n

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )





00 1 34
3

3
3

3
1

1 2 3 4

a a b

a a a a a b

n

n n n n nn n

( ) ( ) ( )


      



È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙̇
˙
˙
˙
˙
˙

 (1.64a)
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 a j3
1( )  = a3j – a31a1j

(1)  j = 2, n

 b3
1( )  = b3 – a31b1

(1)

 a j3
2( )  = a a aj j3

1
32
1

2
2( ) ( ) ( )-   j = 3, n

 b3
2( )  = b a b3

1
32
1

2
2( ) ( ) ( )-

 a j3
3( )  = 

1

33
2 3

2

a
a j( )

( )Ê

ËÁ
ˆ

¯̃
  j = 4, n

 b3
3( )  = 

1

33
2 3

2

a
b

( )
( )Ê

ËÁ
ˆ

¯̃
 

(1.64b)

Proceeding in this manner the nth derived system is obtained as shown below:

  

1

1

1

12
1

1
1

1
1

2
2

2
1

a a b

a b

b

n

n

n
n

( ) ( ) ( )

( ) ( )

( )

◊ ◊ ◊

◊ ◊ ◊
◊ ◊ ◊ ◊ ◊

◊ ◊ ◊ ◊

È

Î

Í
Í
Í
Í
Í
ÍÍ
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

 (1.65)

It should be noted that at the end of the kth step, work on rows 1 to k gets 
completed and rows k + 1 to n have not yet entered the process in any way. 

The solution can now be obtained by back substitution.

 xn = bn
n( )  

 xn–1 = b a xn
n

n n
n

n-
-

-
-- ◊1

1
1
1( )
,

( )  (1.66)

 xi = b a xi
i

i j
i

j
j i

n
( )

,
( )- ◊

= +
Â

1

 

In programming, the xi’s replace the bi’s one-by-one as they are computed, 
starting with xn, and working back to x1. When A is full and n is large, it can 
be shown that the number of multiplication–addition operations for triangular 
decomposition is approximately 1/3n3 compared with n3 for inversion. 

It can be easily verified that triangularization in the same order by columns 
instead of rows would have produced identically the same result. Each eliminated 
element aij

j( ) ,-1  i > j, would have been the same and the number of operations 
would have been the same. The back substitution also could have been 
accomplished by columns instead of rows in the same number of operations.
EXAMPLE 1.12 Solve the following equations using the Gauss elimination 
method:
 2x1 + x2 + 3x3 = 6
 2x1 + 3x2 + 4x3 = 9
 3x1 + 4x2 + 7x3 = 14
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Solution: In the matrix form 

  
2 1 3
2 3 4
3 4 7

1

2

3

È

Î

Í
Í

˘

˚

˙
˙

È

Î

Í
Í

˘

˚

˙
˙

x
x
x

 = 
6
9

14

È

Î

Í
Í

˘

˚

˙
˙

\ A = 
a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

2 1 3

2 3 4

3 4 7

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Augmented matrix = 
a a a b

a a a b

a a a b

11 12 13 1

21 22 23 2

31 32 33 3

2 1 3 6

2 3 4 9

3 4 7 14

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

ÎÎ

Í
Í
Í

˘

˚

˙
˙
˙

  = 

1

1

1

12
1

13
1

1
1

23
2

2
2

3
3

a a b

a b

b

( ) ( ) ( )

( ) ( )

( )

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 

The first step is to divide the elements of the first row by a11,

 a j1
1( )  = 1

11
1a

a j
Ê
ËÁ

ˆ
¯̃

  j = 2, n

 j = 2
1 1

2
1 0 512

1

11
12; .( )a

a
a= Ê

ËÁ
ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃ =  

 j = 3
1 1

2
3 1 513

1

11
13; .( )a

a
a= Ê

ËÁ
ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃ =

 b1
1( )  = 

1

11
1a

b
Ê
ËÁ

ˆ
¯̃

 = 
1

2
6 3

Ê
ËÁ

ˆ
¯̃ =¥  

The second step is to eliminate a21, from the second row by linear combination 
with the derived first row, and then to divide the remaining derived elements 
of the second row by its derived diagonal element.
 a j2

1( )  = a a aj j2 21 1
1- ( )   j = 2, n

 j = 2 3 2 0 5 222
1

22 21 12
1; .( ) ( )a a a a= - = - =¥  

 j = 3 4 2 1 5 123
1

23 21 13
1; .( ) ( )a a a a= - = - =¥

 b2
1( )  = b a b2 21 1

1- ( ) = 9 – 2  3 = 3

 a j2
2( )  = 

1

22
1 2

1

a
a j( )

( )Ê

ËÁ
ˆ

¯̃
  j = 3, n

 j = 3
1 1

2
1 0 523

2

22
1 23

1; .( )
( )

( )a
a

a= Ê

ËÁ
ˆ

¯̃
= Ê

ËÁ
ˆ
¯̃ =¥

 b2
2( )  = 

1

22
1 2

1

a
b

( )
( )Ê

ËÁ
ˆ

¯̃
 = 1

2
3 1 5

Ê
ËÁ

ˆ
¯̃ =¥ .
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The third step is to eliminate the elements to the left of the diagonal of the 
third row and to divide the remaining derived elements of the row by the 
derived diagonal element.

 a j3
1( )  = a a aj j3 31 1

1- ( )   j = 2, n

 j = 2 4 3 0 5 2 532
1

32 31 12
1; . .( ) ( )a a a a= - = - =¥  

 j = 3 7 3 1 5 2 533
1

33 31 13
1; . .( ) ( )a a a a= - = - =¥  

 b3
1( )  = b a b3 31 1

1- ( )  = 14 – 3  3 = 5

 a j3
2( )  = a a aj j3

1
32

1
2
2( ) ( ) ( )-   j = 3, n

 j = 3 2 5 2 5 0 5 1 2533
2

33
1

32
1

23
2; . . . .( ) ( ) ( ) ( )a a a a= - = - =¥  

 b3
2( )  = b a b3

1
32
1

2
2( ) ( ) ( )-  = 5 – 2.5  1.5 = 1.25

 a j3
3( )  = 1

33
2 3

2

a
a j( )

( )Ê

ËÁ
ˆ

¯̃
  j = 4, n

 b3
3( )  = 

1

33
2 3

2

a
b

( )
( )Ê

ËÁ
ˆ

¯̃
 = 1

1 25
1 25 1

.
.

Ê
ËÁ

ˆ
¯̃ =¥
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2
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3
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a b
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Î
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˙
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È
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Í
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˘

˚
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The solution can now be obtained by back substitution.
x bn n

n= ( )

  n = 3;
  x3 = b3

3 1( ) =
 x3 = 1

x b a xn n
n

n n
n

n- -
-

-
-= - ◊1 1

1
1
1( )
,

( )

 x3–1 = b a x3 1
3 1

3 1 3
3 1

3-
-

-
-- ◊( )
,

( )

 x2 = b a x2
2

2 3
2

3 1 5 0 5 1 1( )
,

( ) . .- ◊ = - =¥
 x2 = 1

x b a xi i
i

ij
i

j
j i

n

= - ◊
= +
Â( ) ( )

1

 x1 = b a x a x1
1

12
1

2 13
1

3 3 0 5 1 1 5 1 1( ) ( ) ( )[ ] [ . . ]- + = - + =¥ ¥  
 x1 = 1

 X = 
x

x

x

1

2

3

1

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙
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1.8.4 Triangular Decomposition of Table of Factors 

If the forward operations on b had been recorded so that they could be repeated, 
it is obvious that with this record and the upper triangle Eq. (1.65) for the 
back substitution, Eq. (1.60) could be solved for any vector b without repeating 
the triangularization. The recording of the forward operations, however, is 
trivial. Each forward operation is completely defined by the row and column 
coordinates and value of a single element a i jij

j( ) , ,- >1  that occurs in the 
process. Therefore, it is unnecessary to do anything to record these elements 
except to leave them. 

The rules for recording the forward operations of triangularization are:

 1. When a term 1 1/aii
i( )-  is computed, store it in the location ii.

 2. Leave very derived term a i jij
j( ) , ,- >1  in the lower triangle Eq. (1.65).

Since the forward as well as the back substitution operations are recorded 
in this scheme, it is no longer necessary to include the vector b. The final 
result of triangularizing A and recording the forward operations is symbolized 
in Eq. (1.67).

  

d u u u

l d u u

l l d u

l l l d

n

n

n

n n n nn

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3











◊ ◊ ◊ ◊
 (1.67)

The elements of Eq. (1.67) defined in terms of the derived systems of A in 
Eq. (1.61) to Eq. (1.65), are:

 dii = 
1

1aii
i( )-  

 uij = aij
i( )   i < j  (1.68)

 lij = aij
j( )-1  i > j 

The matrix brackets are omitted in Eq. (1.67) to emphasize that the array 
is not strictly a matrix in the same sense as the preceding examples, but only 
a scheme of recording. It will be referred to as the table of factors. In the 
literature this result is frequently shown as a factoring of the inverse matrix 
into the product of a lower and an upper triangular matrix, but it is more 
suitable for this discussion to consider it as a table of factors.

It is convenient in symbolizing the operations for obtaining direct solutions 
to define some special matrices in terms of the elements of the table of factors 
(1.67). The following nonsingular matrices differ from the unit matrix only in 
the row or column indicated.
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 Di: Row i = (0,0,... 0, dii, 0, ... 0, 0)
 Li: Col i = (0,0,... 0,1, –li+1,i, –li+2,i ... –ln–1,i, –ln,i)T

 Li: Row i = (–li,1, –li,2 ... –li,i–1, 1, 0, ... 0, 0) (1.69)
 Ui: Row i = (0,0, ... 0, 1, –ui,i+1, –ui,i+2 ... –ui,n–1, –ui,n)
 Ui: Col i = (–u1,i, –u2,i, ... –ui–1,i, 1,0, ... 0,0)T

The inverses of these matrices are trivial. The inverse of the matrix Di 
involves only the reciprocal of the element dii. The inverses of the matrices Li, 
Li

*, Ui and Ui* involve only a reversal of algebraic signs of the off-diagonal 
elements.

The forward and back substitution operations on the column vector b that 
transform it to x can be expressed as premultiplications by matrices Di, or L 
Li

* and Ui or Ui
*. Thus the solution of AX = b can be expressed as indicated 

in Eq. (1.70a) to 1.70d).
 U1U2 ... Un–2Un–1DnLn–1Dn–1Ln–2 ... L2D2L1D1b = A–1 b = x (1.70a)
 U1U2 ... Un–2Un–1DnLn

*Dn–1L*
n–1 ... L3

* D2L2
*D1b = A–1 b = x (1.70b)

 U2
*U3

* ... U*
n–1Un

*DnLn–1Dn–1Ln–2 ... L2D2L1D1b = A–1 b = x (1.70c)
 U2

*U3
* ... U*

n–1Un
*DnLn

*Dn–1L*
n–1 ... L3

* D2L2
* D1b = A–1 b = x (1.70d)

EXAMPLE 1.13 Solve the following equations using triangular decomposition 
with table of factors.
 2x1 + x2 + 3x3 = 6 
 2x1 + 3x2 + 4x3 = 9
 3x1 + 4x2 + 7x3 = 14
Solution:

In the matrix form  
2 1 3

2 3 4

3 4 7

1

2

3

È

Î
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Í
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˚

˙
˙
˙

È
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x
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È

Î

Í
Í
Í

˘

˚

˙
˙
˙

\  A = 
a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

2 1 3

2 3 4

3 4 7

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

and augmented matrix 
a a a b

a a a b

a a a b

11 12 13 1

21 22 23 2

31 32 33 3

2 1 3 6

2 3 4 9

3 4 7 14

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

ÎÎ

Í
Í
Í

˘

˚

˙
˙
˙ 

Using the Gauss elimination method, we will get (from Example 1.12)

  

1

1

1

1 0 5 1 5 3
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1

13
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1
1

23
2

2
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3
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a b
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= 00 5 1 5

1 1

. .

È

Î

Í
Í
Í

˘

˚
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Table of factors

  
d

a
ii

ii
i

= -
1

1( )

 
Therefore,

 d11 = 
1 1

2
0 5

11
0a( )

.= Ê
ËÁ

ˆ
¯̃ =  

 d22 = 1 1

2
0 5

22
1a( )

.= Ê
ËÁ

ˆ
¯̃ =

\	 a22
1( )  value obtained from Example 1.12

  d33  = 1 1

1 25
0 8

33
2a( ) .

.= Ê
ËÁ

ˆ
¯̃ =

\ a33
2( )  value obtained from Example 1.12

  uij = aij
i( )   i < j

  u12 = a12
1 0 5( ) .=  

  u13 = a13
1 1 5( ) .=  

  u23 = a23
2 0 5( ) .=  

  lij = uij
j( )-1   i > j

  l21 = a21
0 2( ) =  

  l31 = a31
0 3( ) =  

  l32 = a32
1 2 5( ) .=  

\	 a a a a32
1

32 31 12
1 4 3 0 5 2 5( ) ( ) . .= - = - =¥  

The table of factors for A is

  

d u u

l d u

l l d

11 12 13

21 22 23

31 32 33

0 5 0 5 1 5

2 0 5 0 5

3 2 5 0 0

=
. . .

. .

. .  
With b given, the equation AX = b can be solved for x using the equation 
below, which is based on Eq. (1.70a)
  U1U2 ... Un–2Un–1DnLn–1Dn–1Ln–2 ... L2D2L1D1b = A–1 b = x
For n = 3

U1U2D3L2D2L1D1b = A–1 b = X

 U1 = 
1

1

1

1 0 5 0 5

1

1

12 13- -È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
- -È

Î

Í
Í
Í

˘

˚

˙
˙
˙

u u . .
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 U2 = 
1

1

1

1

1 0 5

1
23-

È

Î
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˘

˚

˙
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˙
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È

Î

Í
Í
Í

˘

˚

˙
˙
˙

u .  
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1
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1
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0 833d

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙.

 L2 = 
1

1

1

1

1

2 5 132-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙l .
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1

1

1

0 5

1
22d

È
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Í
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Í

˘

˚

˙
˙
˙

=
È
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Í
Í
Í

˘

˚

˙
˙
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.

 L1 = 
1

1

1

1

2 1

3 1
21
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-
-

È
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Í
Í
Í

˘

˚

˙
˙
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È

Î

Í
Í
Í

˘

˚

˙
˙
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d11

1

1

0 5
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1

È
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Í
Í
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=
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Í
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˙
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.
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14

È

Î

Í
Í
Í

˘

˚

˙
˙
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1 0 5 0 5

1

1

1

1 0 5

1

1

1
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1 2

- -È
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˚

˙
˙
˙

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

. .

.

.

U U D33 2 2

1

1

2 5 1

1

0 5

1-

È
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˙
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L D

 L1     D1       b   =  X

 
1

2 1

3 1
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1

1

6

9

14
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È

Î

Í
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Í
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˚
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È
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Í
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˚

˙
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È
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˙
˙
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È
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Í
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Í
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˚
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EXAMPLE 1.14 Use the LU decomposition or triangular factorization method 
to solve the following simultaneous equations.
 2x1 +  x2 + 3x3 = 6 
 2x1 + 3x2 + 4x3 = 9
 3x1 + 4x2 + 7x3 = 14
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Solution:

In the matrix form 
2 1 3

2 3 4

3 4 7

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

x

x

 = 
6

9

14

È

Î

Í
Í
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˘

˚

˙
˙
˙

 

 A =    L      U

 

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = 

l

l l

l l l

u u

u
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21 22

31 32 33

12 13
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1

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
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 a21 = l21 a22 = l21u12 + l22 a23 = l21u13 + l22u23 
 a31 = l31 a32 = l31u12 + l32 a33 = l31u13 + l32u23 + l33

 
2 1 3

2 3 4

3 4 7

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = 
l

l l

l l l

u u

u
11

21 22

31 32 33

12 13

23

1

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 

The first row of the L & U matrices on the right side
 a11 = l11  l11 = a11 = 2

 a12 = l u u
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The second row of the L & U matrices on the right side
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The third row of the L & U matrices on the right side
 a31 = l31  l31 = a31 = 3
 a32 = l31u12 + l32  l32 = a32 – l31u12 = 4 – 3  0.5 = 2.5
 a33 = l31u13 + l32u23 + l33  l33 = a33 – l31u13 – l32u23

    = 7 – 3  1.5 – 2.5  0.5 = 1.25
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  U = 
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 [A] [x]  = [b]
And if [A] = [L] [U]
Then first solving [L] [z] = [b]
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 z1 = 3
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 3z1 + 2.5z2 + 1.25z3 = 14
 z3 = 1
And then [U] [x] = [z]
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1.8.5 Bi-factorization Method

If A is a sparse matrix, the set of n linear equations, AX = b, can be solved 
effectively by using the bi-factorization method. The inverse of A can be 
expressed by a multiple product of 2n factor matrices.
  A–1 = R(1)R(2) ... R(n)L(n) ... L(2)L(1) (1.71)
In order to find L and R, the following sequence of intermediate matrices is 
introduced.
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 A(0) = A
 A(1) = L(1)A(0)R(1)

 

 A(j) = L(j)A(j–1)R(j)

 

 A(j) = L(j)A(j–1)R(j)
 

 A(n) = L(n)A(n–1)R(n) = I
where the reduced matrix A(j) has elements defined by the following equations
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j being the pivotal index and i, k = ( j + 1), ..., n.
The left-hand factor matrices L(j) are very sparse and differ from the unity 
matrix in column j only.
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The right-hand factor matrices R(j) are also very sparse and differ from the 
unity matrix in row j only.
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where
Ljj =   (change i as j)

and

Lij   (leave as it is) 
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where 

 Rjk
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1   k = (j + 1), ..., n    

For a symmetric matrix A, the structures of left (L) and right (R) factor matrices 
are the same and can therefore be stored effectively in the matrix F as follows:
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Solution to Eq. (1.71) can be written as
  X = R(1)R(2) ... R(n)L(n) ... L(2)L(1)b (1.72)
EXAMPLE 1.15 Solve the following simultaneous equations using the 
bi-factorization method.
 2x1 + x2 + 3x3 = 6 
 2x1 + 3x2 + 4x3 = 9
 3x1 + 4x2 + 7x3 = 14

Solution: To find  X = R(1)R(2)L(3)L(2)L(1)b
In the matrix form AX = b
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Step 2:
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Step 3:
  L(3)A(2)R(3) = A(3)
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Comparison of methods for triangularization and  
bi-factorization
 • These are identical methods based on removing Gauss.
 •  The number of arithmetic operations is equal in both methods.
 • Since the factors raised by both the methods are different, the method 

of bi-factorization requires less memory, less indexing and simple 
arithmetic operations.

 • In the triangular decomposition LUs are not symmetric. LDUs in the 
decomposition are symmetrical, but require a larger number of operations.

 • The product of triangular matrices is also the matrix. The product of 
matrices is the matrix bifactors inverse, which facilitates the attainment 
of the solution.

 • The bi-factorization is of particular interest for those sparse matrices, 
which have predominantly main diagonal elements, or arrays that are 
not symmetrical, but have a structure symmetric sparsity.

1.8.6 Sparsity and Optimal Ordering Scheme

When the matrix to be triangularized is sparse, the order in which rows are 
processed affects the number of nonzero terms in the resultant upper triangle. 
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If a programming scheme is used which processes and stores only the nonzero 
terms, a great savings in operations and computer memory can be achieved by 
keeping the table of factors as sparse as possible. The absolute optimal order 
of elimination would result in the least possible terms in the table of factors. 
An efficient algorithm for determining the absolute optimal order has not been 
developed, and it appears to be a practical impossibility. However, several 
effective schemes have been developed for determining the near-optimal orders.

Schemes for near-optimal ordering
The inspection algorithms for near-optimal ordering are applicable to sparse 
matrices that are symmetric in pattern of nonzero off-diagonal terms, i.e. if 
aij is nonzero, then aji also is nonzero but not necessarily equal to aij. These 
are the matrices that occur most frequently in network problems. From the 
standpoint of programming efficiency, the algorithms should be applied before, 
rather than during, the triangularization. It is assumed in what follows that the 
matrix rows are originally numbered according to some external criterion and 
then renumbered according to the inspection algorithm. Eliminations are then 
performed in ascending sequence of the renumbered system. 

The descriptions of three schemes for renumbering in near-optimal order are 
the following. They are listed in increasing order of programming complexity, 
execution time, and optimality.

Scheme 1: Number the rows of the coefficient matrix A according to the 
number of nonzero off-diagonal terms before elimination. In this scheme 
the rows with only one off-diagonal term are numbered first, those with 
two off-diagonal terms are numbered second, etc. and those with the most 
off-diagonal terms are numbered last.

From the network point of view, the nodes are numbered, starting with that 
having the fewest connected branches (i.e. minimum degree). This method does 
not take into account anything that happens during the elimination process but 
it is simple to program and fast to execute. The only information needed here 
is a list of the number of nonzero terms in each row of the original matrix.

Scheme 2: Number the rows of the coefficient matrix A so that at each step 
of the process the next row to be operated upon is the one with the fewest 
nonzero terms. If more than one row meets this criterion, select anyone.

From the network point of view, the nodes are numbered, so that at  
each step of the elimination the next node to be eliminated is the one having 
the fewest connected branches (i.e. minimum degree). This method requires 
a simulation of elimination process to take into account the changes in the  
node branch connection effected at each. This scheme requires a simulation of 
the effects on the accumulation of nonzero terms of the elimination process. 
Input information is a list by rows of the column numbers of the nonzero 
off-diagonal terms, i.e. branches. This scheme, though takes longer time, is 
definitely better.
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Scheme 3: Number the rows so that at each step of the elimination process 
the next row to be operated upon is the one that will introduce the fewest 
new nonzero terms. If more than one row meets this criterion, select anyone.

From the network point of view, the nodes are numbered, such that at 
each step of the elimination process the next node to be eliminated is the one 
that will introduce the fewest row equivalent of every feasible alternative, i.e. 
new links at each step. Input information is the same as that of scheme (2).

Advantages of the above schemes: The comparative advantages of these 
schemes are influenced by the network topology and size and the number of 
direct solutions required. The only virtue of scheme (1) is its simplicity and 
speed. For nodal equations of power networks, scheme (2) is enough and better 
than scheme (1), to justify the additional time required for its execution. Scheme (3) 
does not appear to be enough, and not better than scheme (2) to justify its use for 
power networks, but it is known to be effective for other networks. 

Comparative advantages for a sparse matrix
When A is a sparse matrix, the advantages of the factored form in addition to 
those previously listed are:
 1. The table of factors can be obtained in a small fraction.
 2. The storage requirement is small, permitting much larger systems to 

be solved.
 3. Direct solutions can be obtained much faster unless the independent 

vector is extremely sparse.
 4. Round-off error is reduced.
 5. Modifications due to changes in the matrix can be made much faster.

The only disadvantage of the method is that it requires much more 
sophisticated programming techniques.

Review Questions

Part-A

 1. What is power system?
 2. What are the objectives of power system analysis?
 3. What are the components of power system?
 4. What is the modern power system?
 5. What is complex power?
 6. What is a bus?
 7. Define per phase analysis.
 8. Draw the per phase basis or modelling or representation of all components 

of power system.
 9. What is an infinite bus bar?
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 10. What is single line diagram?
 11. What is the purpose of using single line diagram?
 12. What is impedance diagram? What are the approximations made in 

impedance diagram?
 13. What is reactance diagram? What are the approximations made in 

reactance diagram?
 14. Define per unit value.
 15. What are the advantages of per unit system?
 16. What is the need for base values?
 17. Write the equation for per unit impedance if a change of base occurs.
 18. A generator rated at 30 MVA, 11 kV has a reactance of 20%. Calculate 

its per unit reactance for a base of 50 MVA and 10 kV.
 19. What is the new per unit impedance if the new base MVA is twice the 

old base MVA?
 20. What is a primitive network?
 21. What is a bus admittance matrix?
 22. What are the methods available for forming the bus admittance matrix?
 23. What is sparse matrix?
 24. What are the advantages and disadvantages of sparse matrix?
 25. Compare the methods of triangularization and bifactorization.

Part-B

 1. The single line diagram of a three-phase power system is shown in 
the figure below. Draw its per unit impedance diagram.

  G: 100 MVA, 33 kV, X = 20%
  T1: 50 MVA, 33/220 kV, X = 10%
  T2: 40 MVA, 220/33 kV, X = 5%
  T3: 30 MVA, 33/110 kV, X = 5.2%
  T4: 40 MVA, 110/33 kV, X = 5%
  M: 80 MVA, 10.45 kV, X = 20%
  Line 1 = 115 W; Line 2 = 40 W
  Motor: 60 MVA, 33 kV, X = 20%
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 2. Form the matrix [Ybus] and compute the answer using the inspection method 
and singular transformation method. All the impedance values are in per 
unit.

 3. For a power system network with the following data, compute the bus 
admittance matrix.

System data

Line Start End X-value
G1 1 0 1
G2 5 0 1.25
L1 1 2 0.4
L2 1 3 0.5
L3 2 3 0.25
L4 2 5 0.2
L5 3 4 0.125
L6 4 5 0.2

 4. For the power system network with the following data, compute the 
bus incident matrix and form the bus admittance matrix by the singular 
transformation method.

Bus code Per unit line 
impedance

Half line charging  
admittance in per unit

1–2 0.05 + j0.12 j0.025
2–3 0.06 + j0.4 ---
3–4 0.75 + j0.25 j0.02
1–3 0.045 + j0.45 j0.015
1–4 0.015 + j0.05 ---

 5. Find the L and U triangular factors of the symmetric matrix.

M =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 1 3

1 5 4

3 4 7

 6. Solve the following equations using the Gauss elimination method and 
verify the result using the bi-factorization method:

 2x1 + x2 + 3x3 = 5
 1x1 + 5x2 + 4x3 = 3
 3x1 + 4x2 + 7x3 = 12




